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1. 

Consider an orthotropic plate where the x- and y-axes coincide with the principal
directions of elasticity. Such structural elements find common application in
present technology in view of the always increasing use of fiber-reinforced
materials.

On the other hand, orthotropic characteristics may be induced by certain
metallurgical processes [1] and also by certain artificially made differences between
flexural rigidities for two orthgonal directions as in the case of corrugated plates
or the situation where stiffening ribs are attached to the plate element, etc.

When dealing with such orthotropic plates the static and dynamic treatments
are rather straightforward† in the case of rectangular plates whose sides are
parallel to the principal directions of elasticity.

Obviously the analysis is considerably more complicated when dealing with
other plate geometries and in the case of annular circular plates with an inner free
edge one encounters the fact that satisfying the Kirchhoff–Kelvin conditions is
exceedingly difficult. Recent results have been obtained on this problem [3, 4]. The
present study deals with vibrating, simply supported and clamped annular plates
with a free inner edge by means of: (1) analytical approximations using simple
polynomial co-ordinate functions to represent the fundamental mode shape; (2)
numerical determinations using, two well known and extremely accurate finite
element codes [5–6].

† In the sense that one is able to follow and use the isotropic plate solutions [2].
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T 1

Finite element analysis [5] of annular isotropic and orthotropic plates with free inner
edge

Simply supported Clamped
ZXXXXCXXXXV ZXXXXXCXXXXXV

No. No. of No. of
b/a n m of nodes equations V1 equations V1

Isotr. Orthotr. Isotr. Orthotr.
0·1 80 80 6561 19440 4·8901 4·4004 19280 10·1353 9·1249
0·2 80 75 6156 18235 4·7325 4·2547 18075 10·3475 9·3146
0·3 90 70 6461 19150 4·6592 4·1871 18970 11·3381 10·2121
0·4 100 60 6161 18260 4·7435 4·2627 18060 13·5001 12·1591
0·5 120 50 6171 18290 5·0427 4·5305 18050 17·5961 15·8113
0·6 140 45 6486 19225 5·6624 5·0822 18945 25·5362 22·7508
0·7 160 40 6601 19560 6·8634 6·1477 19240 42·9705 37·3192
0·8 200 30 6231 18430 9·4524 8·4405 18030 92·7737 76·3391
0·9 300 20 6321 18620 17·4997 15·5653 18020 359·5490 275·7468

2.  

Using Lekhnitskii’s well known and accepted notation [7] one expresses the
governing functional in the form

J[W]=
1
2 gg $D1012W

1x2 1
2

+2D1n2
12W
1x2

12W
1y2 +D2012W

1y2 1
2

+ 4Dk0 12W
1x 1y1

2

% dx dy−
rv2

2 gg hW2 dx dy, (1)

where, when substituting W(x, y) by an approximation, Wa (x, y), it will suffice
if Wa (x, y) satisfies, at least, the essential boundary conditions of the structural
system.

In the case of an annular plate with a clamped outer boundary the following
approximations are used (isotropic plate)

ar3 + br2 +1, ar4 + br2 +1, ar4 + br3 +1, (2a–c)

arg + br2 +1, ar3 + brg +1, (ar3 + brg +1)(1+ h1 sin2 U+ h2 cos2 U),

(2d–f )

where the a’s and b’s are determined by substituting each co-ordinate function in
the prescribed boundary conditions at the outer edge:

Wa =
dWa

dr
=0 for r= a. (3)

The exponential parameter, g, allows for minimization of the upper bound [8].
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Figure 1. Finite element mesh of one-quarter of the annular plate (b/a=0·1).

In view of the trend of the eigenvalues obtained, in the case of the orthotropic
plate clamped at r= a, the co-ordinate functions (2a) and (2e) were employed.

When dealing with the simply supported isotropic and orthotropic annular plate
with a free edge the same approximations were used and where a and b are
obtained substituting the co-ordinate functions in

W(a)=0,
d2W
dr2 +

n2

r
dW
dr br= a

=0. (4a, b)

Equation (4b) is an approximate condition for the orthotropic case [4].
Admittedly, when dealing with orthotropic structural elements, the azimuthal

variable also comes into play in view of the constitutive properties of the plate
material. Hence, the above approximations are first order representations of the
fundamental mode shapes when dealing with isotropic systems which possess less
degree of accuracy for orthotropic plates.
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3.  

For the isotropic situations Poisson’s ratio was taken equal to 1/3. On the other
hand, the calculations corresponding to the orthotropic problems were performed
assuming D2/D1 =1/2; Dk /D1 =1/3 and n2 =1/3.

When using the finite element method [5] one-quarter of the plate was
subdivided taking ‘‘n’’ divisions in the circumferential direction and ‘‘m’’ divisions,
radially. The corresponding values of ‘‘n’’ and ‘‘m’’ are indicated in Table 1.
Figures 1 and 2 depict the corresponding finite element meshes for b/a=0·1 and
0·5, respectively.

When using the SAMCEF system [6] the modelling was similar. Table 2 depicts
eigenvalues determined using the co-ordinate functions (2) and the finite element
(FE) results for the isotropic case. In general the values determined using (2e) are
lower, and hence more accurate than the eigenvalues determined using (2a), (2b),
(2c) and (2d). For the solid plate an excellent agreement with the exact result is
achieved. The analytical predictions agree well with the finite element calculations
and also for the annular situations, with the exact results recently determined [9].

Table 3 deals with the orthotropic case. The finite element determinations are
in excellent agreement between themselves. The eigenvalues obtained using (2f) are
in good agreement with the finite element calculations for 0·2E b/aE 0·9. It is

Figure 2. Finite element mesh of one-quarter of the annular plate (b/a=0·5).



    945

T 2

Isotropic, annular plate with a free edge, clamped at the outer boundary

Values of V1 determined using V1 V1

ZXXXXXXXXXXCXXXXXXXXXXV exact using
b/a (2a) (2b) (2c) (2d) (2e) [9] FEa

0 10·246 10·328 11·224 10·226 10·221 10·2158 –
0·1 10·319 10·486 11·434 10·319 10·310 10·1348 10·135
0·2 10·696 11·007 12·070 10·604 10·523 10·3470 10·347
0·3 11·651 12·055 13·212 11·494 11·442 11·3379 11·338
0·4 13·643 14·015 15·147 13·582 13·564 13·5004 13·500
0·5 17·643 17·777 18·654 17·635 17·638 17·5979 17·596
0·6 25·974 25·575 25·830 25·557 25·567 25·5402 25·536
0·7 45·414 44·043 43·143 43·015 43·001 42·9800 42·970
0·8 103·682 100·448 97·445 93·019 92·917 92·8154 92·773
0·9 428·727 420·303 411·876 361·597 361·137 352·9534 359·549
a Using reference [5].

observed that the azimuthal variation contained in equation (2f) improves the
results drastically.

The observation of the fundamental mode obtained by means of the FE method
reveals that for b/a=0·7 the transverse displacements along the x-axis are
somewhat smaller than the displacements along the y-axis. The trend increases
considerably for b/a=0·8, the displacements along the x-axis being practically
non-existent. As a consequence of this phenomenon, if one computes the
eigenvalue corresponding to a mode antisymmetric with respect to x and
symmetric with respect to y, one obtains the frequency coefficient 76·3510 which
practically coincides with the value of V1; see Table 3. A similar analysis for

T 3

Orthrotropic, annular plate with a free edge, clamped at the outer boundary

Values of V1 determined Values of V1

using: calculated by means of
ZXXXXXXXCXXXXXXXV ZXXXXCXXXXV

b/a (2a) (2e) (2f) FEa FEb

0 9·236 9·213 9·213 – –
0·1 9·301 9·293 9·293 9·125 9·10
0·2 9·642 9·485 9·485 9·314 9·29
0·3 10·502 10·313 10·313 10·212 10·19
0·4 12·297 12·226 12·221 12·159 12·13
0·5 15·904 15·899 15·855 15·811 15·80
0·6 23·412 23·047 22·792 22·750 22·72
0·7 40·936 38·761 37·403 37·319 37·24
0·8 93·458 83·754 77·213 76·339 76·01
0·9 386·450 325·524 289·020 275·746 274·5

a Using reference [5].
b Using reference [6].
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T 4

Isotropic, annular plate with a free edge, simply supported at the outer boundary

Values of V1

determined using V1

ZXXXXCXXXXV V1 using
(2a) (2e) exact [9] FEa

0 4·993 4·984 4·9838 –
0·1 4·992 4·985 4·8903 4·890
0·2 5·019 4·855 4·7327 4·732
0·3 5·108 4·731 4·6593 4·659
0·4 5·295 4·780 4·7437 4·743
0·5 5·637 5·061 5·0432 5·042
0·6 6·244 5·672 5·6630 5·662
0·7 7·382 6·868 6·8644 6·863
0·8 9·858 9·456 9·4550 9·452
0·9 17·742 17·511 17·5107 17·499

a Using reference [5].

b/a=0·9 yields for a mode, also antisymmetric with respect to x and symmetric
with respect to y, a frequency coefficient of 275·7468 which now agrees with V1.‡

Tables 4 and 5 depict comparisons of fundamental frequency coefficients for
isotropic and orthotropic plates, respectively, when the outer edge is simply
supported. For the isotropic situation the agreement between analytical and finite
element results is excellent and it is quite good in the case of the hypothetical

‡ Use of references [5, 6] lead to the same conclusions, from a practical viewpoint.

T 5

Orthotropic, annular plate with a free edge, simply supported at the outer boundary

Values of V1 V1

determined using determined using:
ZXXXXXXXXXCXXXXXXXXXV ZXXXCXXXV

b/a (2a) (2e) (2d) (2f) FEa FEb

0 4·501 4·492 4·493 4·492 – –
0·1 4·500 4·494 4·500 4·494 4·400 4·40
0·2 4·524 4·376 4·407 4·376 4·254 4·25
0·3 4·605 4·264 4·279 4·264 4·187 4·18
0·4 4·773 4·310 4·315 4·310 4·262 4·26
0·5 5·081 4·571 4·565 4·571 4·530 4·53
0·6 5·628 5·127 5·114 5·127 5·082 5·08
0·7 6·654 6·207 6·192 6·207 6·147 6·15
0·8 8·886 8·524 8·524 8·523 8·440 8·44
0·9 15·993 15·784 15·784 15·777 15·565 15·57

a Using reference [5].
b Using reference [6].
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orthotropic material for 0·2E b/aE 0·9 and reasonably acceptable for b/a=0·1.
It is concluded that the use of equations (2e) or (2f) is practically equivalent.

It is rather remarkable that when dealing with clamped orthotropic annular
plates the analytical approximations is not as good as in the case of the simply
supported edge, although for the latter, only one satisfies exactly the essential
boundary condition at the outer edge.
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